
UAH RESEARCH REPORT NO. 751

A NATURAL LANGUAGE

INTERFACE TO DATABASES

FINAL REPORT

Prepared by:

D. R. Ford

Johnson Research Center

The University of Alabama in Huntsville
Huntsville, AL 35899

Prepared for:

John Wolfsberger
System Software Branch

Information and Electronic Systems Lab

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Marshall Space Flight Center, AL 35812

October 1988

ABSTRACT

This paper presents the development of a Natural Language

Interface (NLI) which is semantic-based and uses Conceptual

Dependency representation. The system was developed using Lisp

and currently runs on a Symbolics Lisp machine. A key point is that

the parser handles morphological analysis, which expands its

capabilities of understanding more words.

t.

L_," " ?,,1 _. (\ I'; _ '(

1.0 Introduction:

Natural languages are the languages used by people in the

course of their daily affairs, for example, English, French, Japanese,

etc. Natural languages are used to express a broad range of ideas to

others. Given enough attention, nearly any concept that comes to

mind can be conveyed to another person through a common natural

language. Some concepts are easy to express, such as, "1 am hungry,"

whereas others may require lengthy explanations. The prime

characteristic of natural languages is that they can be used to

express nearly all the concepts that occur to the people who speak

and understand them.

The word natural emphasizes a contrast with artificial

languages. Artificial languages are those that have been designed to

be highly expressive over a limited range of ideas. Musical notation

is an artificial language. Another set of artificial languages is

programming languages. These are interesting because, like natural

languages, they can be used to express a broad range of concepts.

LISP, for instance, is an extendable language, that is, if an idea is

difficult to express in its current form, it can be improved at will.

But programming languages have been designed with their

application to computers in mind, and this has affected their form.

Programming languages have been written so as to be analyzed

easily by computers.

1.1 Motivation:

Research in natural language understanding is concerned with

making computers capable of using natural languages. There are two

reasons for this. First, computers that can use natural languages

would undeniably be a useful tool. It would mean that a person in

need of information retrieval or information processing on a

computer could obtain it without having to learn a computer

language or go through an intermediary. They would not have to

worry about becoming fluent in a "foreign" language and maintaining

that fluency just to accomplish their jobs. A computer that could

use natural languages could read normal text, providing users with

access to computer-generated summaries or reports synthesized

from reading several text sources.

The second motivation for natural language research is that it

will increase our understanding of how human languages and minds

work. To develop the technology for a computer to use language, we

must first be able to say specifically what language is. We must be

able to say precisely how the concepts we wish to express can be

represented in the computer. Building computer programs requires

this precision and attention to detail. A programming

implementation of a theory of language can be used to identify

flaws, inconsistencies, and areas of incompleteness that may go

unnoticed.

1.2 Research Strateaies:

Two research strategies are in use for conducting natural

language understanding research: (1) the isolated phenomena

strategy and (2) the entire system strategy. The first strategy

tests specialized theories of restricted language phenomena, for

example, analysis of syntactic structure of sentences or identifying

the referents for pronouns. Programs are written to show that the

theory can make some contribution to language understanding in the

proper context. One criticism of the isolated phenomena strategy is

that in focusing on a subproblem of natural language understanding,

other subproblems must be assumed solvable by some other methods.

Sometimes the other problems are difficult to solve. The danger is

that attention may unwittingly be focused on the easy or less

crucial problems, leaving the difficult ones unattended.

Another criticism of the isolated phenomena strategy is that

success is difficult to measure. Evaluation mus rely primarily on

plausibility arguments. Without demonstrative evaluation,

deficiencies and inconsistencies in a large piece of work may easily

go undetected.

The second research strategy designs and builds entire natural

language understanding programs. This strategy is closer to applied

research than to pure research. For a given allotment of research

resources, less can be applied to particular subproblems than with

the isolated phenomena strategy. It may also become mired in

implementing many mundane programs, as well as, numerous

interesting ones. However, the entire system strategy is protected

against assuming away the major problems or concentrating on

nonessentials. Because the entire system strategy requires some

attention to the complete range of language analysis, major

problems receive attention first. Another advantage of this strategy

is that it lends itself to impartial evaluation. Because an entire

system must be built to "do something" -- whether answering

questions, generating summaries, or conducting fact searches --

some way must be found to test whether it can do it and to measure

how well it is done.

1.3 Methodoloav:

The methodology of natural language understanding research is

straight forward: develop a theory and program it, then study the

behavior of the resulting program for flaws in the theory. The cycle

starts again with a revised or altogether new theory and a

corresponding program.

It sounds much easier than it is. One is not entirely free in

forming his or her theories, because the theories will have to be

programmed. The human brain is much more complex than any

computer in existence, so computer implementations must, at best,

be partial models of how the human mind works. The programs

written to implement theories of language and cognition tend to be

as large as the computer technology will readily allow. As a result,

the programming arc of the cycle may require several man-years of

effort. Finally, it is not clear how we should study the behavior of

the resulting programs, to characterize their achievements and

understand their flaws.

2.0 SYSTEM DEFINITION:

Most major computer users are currently interested in natural

language modules which fit on top of other coputer software. Given

the current interest in expert systems, a natural language "front end"

seems a very promising application of natural language

understanding. However, the computer software best suited to

benefit from a natural language front end is the database. Typically

databases hold huge quantities of data which have to be stored in

complex ways so as to secure the fastest access for the maximum

proportion of queries. Many formal query languages have been

designed to simplify the problem of getting the correct data from the

monoliths.

These formal languages can be divided into "one-dimensional"

and "two-dimensional" langauages. One-dimensional languages are

composed of letters, numbers, and mathematical signs, while two-

dimensional languages are more mnemonic in design. While there

are shortcomings to both types of formal languages, many of these

can be overcome by extending them and giving more intelligence to

the interpreter.

By doing less with syntax and more with word meaning, the

language can reduce the necessity for the user to conform to an

artificial syntax. If the formal words have a meaning close to their

natural meaning, the burden on the user is further reduced,

especially if all alternative natural language words with the same

meaning are allowable synonyms in the formal language. A final

refinement would be to make the remaining syntax correspond to

the syntax of natural language.

A second improvement would be to reduce the requirement for

the user to know about the details of the database. Natural language

synonyms for all database names are an obvious start, but also the

facility for the interpreter to navigate around the database would be

a great advantage. The ability to use the structure of the data as

well as the structure of the query to aid the interpretation of the

user's input is a necessary feature.

A third improvement that would be possible with an intelligent

interpreter is to recognize the user's intended query on the basis of

incomplete or slightly erroneous input. Thus simple queries could be

recognized in a very abbreviated form. However, more complex

queries would need more complete expression.

Another improvement would be to enable the user to phrase

his queries incrementally. Thus his original query might be

ambiguous and the system could prompt him to select which

interpretation was intended. Or else the could phrase a simple query

and follow up with supplemental queries.

Finally, an intelligent interpreter could perhaps recognize

logical inconsistencies in a query and warn the user, or answer a

broader but consistent query. Also, curtness and breadth of use are

two final desiralbe features.

Clearly all of these are capabilities which natural language

front ends are aiming to provide. In particular, natural language is

powerful and precise where required. However, it is curt and it does

provide a conversational interface which enables the user to ask

incremental queries. The term "natural language" may be a

drawback because it suggests capabilities beyond any current or

foreseeable implementation. It tempts the user to ask common sense

questions outside the area of the database's body of information, or

evaluative questions within its area of information.

The term natural language front end is used for a good reason,

however. It implies that the user should not consciously have to

translate his queries into terms appropriate for the front end.

Language users do unconsciously adapt their way of speaking to

their audience, however, and the natural language subset accepted

by the front end should be dense enough for the user to adapt

without conscious effort.

As long as the user does not have a vastly over-optimistic

expectation of what a natural language front end can do for him, it

can enable him to get the fight answers with less frustration, and

little requirement for technical support.

3.0 SYSTEM DESIGN:

The above system definition was used for the system

requirements. The basic design of the intellegent interpreter was

taken from the tasks specified in the system definition. The front

end should consist of: (1) the parser, (2) the formal query generator,

and (3) the database access routines. Figure 1 contains a diagram of

the front end.

This research effort focused on developing the parser for the

front end. In order to accomplish the system requirements, it was

decided to use a semantic-based parser along the lines of those

developed by the Natural Language Group at Yale Univeristy. A

particularly robust parser was developed by Michael Dyer while at

Yale and this was chosen as the basic model for this research effort.

The parser consists of a dictionary of words, expressions, and

the expectations associated with both; a program that performs the

conversion from words and/or expressions to CD representation; and

a monitoring program that keeps track of which expectations have

been generated and performs the actions associated with an

expectation when the conditions of the expectation are fulfilled.

These components combined are often referred to as a parser.

The parser is intelligent about a limited subset of English and

can extract the intended meaning from sentences. A dictionary is

used by the parser as a data file and provides the CD representation

for the words and expressions.

Many modifications and extensions have been made to the

McDYPAR-based parser used in this research. There is an

expressions feature which allows the definition of expressions in

the lexicon. An expression is defined as a phrase of two or more

words that has a different meaning when parsed together than if the

words are parsed separately. Morphological analysis, which allows

suffixes and/or prefixes to be removed recursively from the word in

an attempt to identify the root of the word, has also been added.

This allows only the root forms of regular verbs, nouns, etc. to be

defined in the dictionary with any associated meaning-changing

suffixes and prefixes. Morphological analysis is performed on both

words and expressions.

Another extension involves identifying pronouns and their

referents. This is accomplished in the usual manner, saving the

most recent instance of many types of nouns and replacing the

pronoun with the referent's definition. This has proven to be a fairly

reliable method, no doubt partly due to the limited, description-

oriented simulation domain.

Other modifications to the parser include handling numbers,

both floating point and integer, as units of meaning and recognizing

sentence voice and other grammatical structures as concepts within

a sentence. In this study, minor modifications have been made to the

CD primitive set in order to customize the parsing environment to

the particular domain. The modifications include adding new key-

word identifiers to definitions, and creating new items that could be

used to fill slots in the conceptual dependency representation. Also,

the code for some expectations was modified to allow physical

objects to perform certain actions.

3.1 CONCEPTUAL DEPENDENCY:

For a machine to be able to understand a user's natural

language, a theory must exist to allow the transfer of the process to

machines. Such a theory does exist and was developed by Dr. Roger

Schank at Yale University. His theory is called Conceptual

Dependency (CD). The essence of CD is that underlying all natural

languages is a representational scheme for concepts, and that the

purpose of natural language is to communicate concepts. Thus, in

order to understand natural language, the symbols used to convey

concepts must first be converted into an underlying representational

scheme and structures. This scheme is called CD representation.

CD theory was always intended to be a theory of how humans

process natural language that was explicit enough to allow for

programming it on a computer. An underlying principle of CD is that

meaning representation must consist of concepts and relations

between concepts. Also, there should be restrictions as to what

qualifies as either. The syntax of the conceptual level consists of

all the rules for constructing relationships between concepts on this

level.

The basic components of CD are : (1) conceptual analysis, (2)

expectations, (3) primitive acts, and (4) conceptualization.

Conceptual analysis is the process of converting the natural

language input into CD representation. The analysis of a sentence

consists of two activities: (1) adding expectations to a list and (2)

checking the expectation list to determine if any have been

satisfied. Whenever a word or expression is analyzed, it is checked

for any associated expectations. If any are attached to the word,

they are added to the expectation list and the list is checked to see

if any expectations have been satisfied. This process is repeated for

each word and/or expression in a sentence.

The analysis of a sentence is driven by the execution of these

expectations. Also, the expectations utilize the conceptual rules of

CD. This is the knowledge provided by the syntax of the conceptual

level which describes how conceptual categories can be combined.

Expectations are the basic mechanisms of a comprehension. An

expectation is a description of a situation that is recognized as

possibly becoming true in the future. Associated with any

expectation is a list of actions to be performed when the expected

situation comes into existence. Thus, an expectation consists of

conditions that must be satisfied and the actions to be performed

when the conditions are satisfied. This is a general kind of world

knowledge that allows appropriate response to a situation as soon

as it is recognized. The importance of expectations is that they

prepare sets of actions for use, if needed, and they narrow the

perception of future situations. Thus, expectations are used to

predict what concepts and words may occur and eliminate most of

the ambiguity involved in language processing.

Primitive acts are the basic elements into which all verbs are

divided. Also, they are the basic structure used to construct a

conceptualization. Schank has defined eleven primitive acts. These

involve actions that can be applied to objects by actors. An act

refers only to what an actor has actually done and is treated

separately from the possible consequences of the action.

A conceptualization is the basic unit of the conceptual level

out of which thoughts are constructed. It is the resulting CD

representation of a sentence plus any inferences. A

conceptualization can be composed of an actor, act, object,

recipient, direction, and state.

CD representation allows the computer to process a natural-

language description in sentence form in order to extract the

meaning expressed by the user. This meaning is represented as

concepts. From the concepts, translation to other languages, both

human and computer, is possible. Thus, the computer is capable of

performing the first task performed by the analyst (i.e.,

understanding the natural-language description of the model)

identified earlier.

3.2 AN EXAMPLE:

In order to test the functionality of the parser, a test domain

of simulation was chosen. This was based on our familiarity with

the simulation world and the inability to gain access to NASA

personnel with database expertise. No blame is being placed.

Efforts were made, but due to time constraints and availability we

were unable to make the connections. Thus the following example

will be used to illustrate the capability of the parser.

The parser takes as input a written description of the process

that the user desires to simulate. This description is in sentence

form in the user's own words. A sample input is found in Table 3.

This description is a simplified version of a printed circuit board

moving through one machine in a manufacturing facility. The

acronyms, DIP and VCD, signify different types of machines in the

manufacturing process and what they stand for is not relevant to the

problem discussion at this point. The description in Table 3 is typed

directly into the computer. If any mistakes are made in typing, the

user can backup and correct them. However, once the inputting

process is completed, no corrections can be made by the user. To let

the parser know that the input is complete and ready to be

processed, the user types "Done." on a separate line. Once the parser

recognizes this word, it begins separating the sentences and the

words to determine the meaning of each.

The words and expressions contained in Table 4 are

representative of those contained in the PARSER. For every word and

expression there are two elements: (1) the definition and (2) the

expectations. The definition of a word or expression is found after

the key-word "def", and is a CD structure or part of a structure. For

TABLE 3

AN EXAMPLE INPUT TO THE PARSER

The printed circuit boards arrive at the DIP machine
according to a uniform distribution with a minimum of 8
seconds and a maximum of 12 seconds. The printed
circuit boards are processed at the DIP machine for 3
seconds. The printed circuit boards then proceed to the
VCD machine.
Done.

example, the word ARRIVE has a CD structure for a definition and

the expression PRINTED CIRCUIT BOARD has a part of a CD structure

for its definition.

Values of the components of the CD structure that are used for

definitions can be a specific item or computer code to determine

what the value should be. Look at the definition for ARRIVE in Table

4 . The value for the ACTOR component is NIL or unknown. This is a

specific value. However, the OBJECT component contains computer

code to locate the value that should be associated with this

component. This code is given what to search for and where in the

sentence to search.

The other element, expectations, of a word or expression is

located after the key-word "demons". These expectations are the

name or names of various computer code needed to complete the

definition and/or CD representation. For instance, the expression

PRINTED CIRCUIT BOARD contains two expectations: (1) save-object

and (2) how-many. The first expectation needs no additional

information to perform its task, but the second one needs the word

"quantity", and a variable called "suffix20" and the normal ending to

form the plural of "printed circuit board".

The parser takes the first sentence from the input and looks

for any expressions that may be contained therein. An example of an

expression in this case is PRINTED CIRCUIT BOARD. The conceptual

dependency representation is removed from the expression and

stored in the working area of the parser. Also, any expectations are

placed on a list. Symbols and pointers are used to keep track of

which expression and/or word goes with which sentence.

After the expressions have been identified, then the remaining

elements of the sentence must be words. The parser starts at the

beginning of the sentence and looks up each word and locates the

associated conceptual dependency representation. An example of

this can be seen in Table 4. The conceptual dependency

representation for the word ARRIVE is found after the key-word

"def", and includes everything after the opening parenthesis and

before the second closing parenthesis following " 'after."

As the word is placed into the working area, any associated

expectations are placed on the expectation list. An example is in

Table 4. The expectations for the word ARRIVE are located after the

word "demons" and also inside the conceptual dependency

representation itself. After the words "object" and "to", an arrow

(<--=) appears. This indicates that these values are to be determined

by the expectations that follow. This process is the same for words

as it is for expressions.

After each word or expression is placed into the working area,

all expectations on the expectation list are tested. If any

expectation passes the test, then it is allowed to complete its

action. Completing an action entails connecting various conceptual

dependency representations for words and expressions to form a

representation for a sentence or filling in values that are missing.

For instance, the expectations attached to the "object" and "to" slots

of the word ARRIVE will locate values for these slots and insert

them. This process repeats itself until all the words and/or

expressions in all of the sentences of the input are checked. After

this, the conceptual dependency representations for each sentence

are placed on a list that would be sent to the formal query generator.

An example of this representation is in Table 5.

The CD representation in Table 5 is the result of the parser

processing the English input in Table 3. The key word SENT-NUM is

the connecting link between the input and the output of the parser.

There are three sentences in the input and three CD representations

generated. The first sentence in Table 3 is represented by the

TABLE 4

EXAMPLESOF WORDS AND EXPRESSIONSIN THE DICTIONARY

WORDS:

(ENTER

demons

def (ptrans actor nil
object * <== (exp-wrt-voice

'(process-object pronoun)

'before)

to * <---= (exp-wrt-voice
'(complex process-actor pronoun)

'after))
((get-sentence-number) (determine-voice)))

(ARRIVE

demons

def (ptrans actor nil

object * <== (exp-wrt-voice '(process-

object pronoun) 'before)

to * <--= (prep '(at)'(complex process-actor

pronoun) 'after))

((get-sentence-number) (determine-voice)))

EXPRESSIONS:

((PRINTED-CIRCUIT-BOARD)

def (process-object name (printed-circuit-board))

demons ((save-object) (how-many 'quantity 'suffix20 's)))

((NORMAL DISTRIBUTION)

def (dist-type name (normal)

mean * <=-- (exp-statistic '(mean) 'after)
sd * <=- (exp-statistic '(standard-deviation)

'after))

demons (ins-bef '(ptrans do) 'dist))

PTRANS statement in Table 5. There are six major parts to this

statement: (1) Actor, (2) Object, (3) To, (4) Voice, (5) Sent-Num, and

(6) Dist. The basic structure of the PTRANS is attached to the verb

ARRIVE. The Actor approximates the subject of the sentence which

is unspecified in the first sentence, i.e., how the printed circuit

boards arrive at the DIP machine is not given. Thus, NIL is inserted

after Actor.

The Object of the PTRANS is the printed circuit board and its

destination is the DIP machine. This latter information is contained

in the TO slot. The distribution information is contained in the DIST

slot. The distribution is uniform, thus, it must contain a minimum

and a maximum value. The time units are valuable in simulation,

therefore, a record of the units is maintained. The VOICE and SENT-

NUM slots are self-explanatory, and are used for internal

bookkeeping in the parser.

Looking at the second sentence in the English input from Table

3, the corresponding CD representation in Table 5 is the DO

statement. This implies that some action is being performed that

causes a physical change in the composition of an object. The actor

is the DIP machine, the object is the printed circuit board, and the

action is "processed." Another important attribute is the duration of

the action. Again the time units are significant, as well as, the

number of units.

The third sentence in Table 3 is represent by the second

PTRANS statement in Table 5. Here the ACTOR is unknown and the

value of the TO slot has changed to the VCD machine. The OBJECT is

still the printed circuit board.

TABLE 5

AN EXAMPLEOF THE CONCEPTUALDEPENDENCYINPUT
TO THE FORMULATOR

(PTRANS ACTOR NIL
OBJECT (PROCESS-OBJECT NAME (PRINTED-CIRCUIT-

BOARD) QUANTITY (1))
TO (PROCESS-ACTOR CLASS (STATION)

NAME (DIP-MACHINE) QUANTITY (1)
PREPOBJ (PREP IS (AT)))

VOICE (ACTIVE)
SENT-NUM (1)
DIST (DIST-TYPE NAME (UNIFORM)

MIN (STATISTIC NAME (MIN)
MEASURE (TIME NAME (SECOND)

BASE-UNITS (1)
QUANTITY (8)))

MAX (STATISTIC NAME (MAX)
MEASURE (TIMENAME (SECOND)

BASE-UNITS (1)
QUANTITY (12)))))

(DO ACTOR (PROCESS-ACTOR CLASS (STATION)
NAME (DIP-MACHINE) QUANTITY (1)
PREPOBJ (PREP IS (AT)))

OBJECT (PROCESS-OBJECT NAME (PRINTED-CIRCUIT-BOARD)
QUANTITY (1))

VOICE (PASSIVE)
SENT-NUM (2)

DURATION (TIME NAME (SECOND)
BASE-UNITS (1) QUANTITY (3)))

(PTRANS ACTOR NIL
OBJECT (PROCESS-OBJECT NAME

(PRINTED-CIRCUIT-BOARD)
QUANTITY (1))

TO (PROCESS-ACTOR CLASS (STATION)
NAME (VCD-MACHINE)
QUANTITY (1)
PREPOBJ (PREP IS (TO)))

VOICE (ACTIVE)
SENT-NUM (3))

The formal query generator and the database access routines

were not covered in this research effort but will be addressed in the

future phases of this project.

4.0 CONCLUSIONS:

From the work that has been done with constructing a Natural

Language Interface (NLI) both in the past and with this current

effort, it is apparent that connecting an interface to databases is

very feasible and desirable. However, because building a natural

language understanding system is such a domain specific task, much

work will be required to tailor the NLI to an appropriate domain of

interest. Also, from the recent research we believe it is more

advantageous to pursue a dual line of investigation of which type of

interface will be better, either the semantic-based or the keyword.

Another aspect that needs to be looked at closely is testing these

interfaces with "real" humans, i.e., let the people who will use these

systems test them and use other non-interested parties. This will

let us see if the systems are robust enough to be of use to

prospective users, and allow the system to be tailored to specific

needs.

5.0 REFERENCES:

Bobrow, D. G. "Natural Language Input for a Computer Problem-

Solving System." in Semantic Information Processing, ed. M. Minsky,

Cambridge, MA: MIT Press, 1968.

Craig, J. A.; Brenner, S. C.; Carney, H. C.; and Longyear, C. R. "Deacon:
Direct English Access and Control." in Proceedings of the Fall Joint
Computer Conference, Montvale, NJ: AFIPS Press, 1966.

Green, B. F.; Wolf, A. K.; Chomsky, C.; and laughery, K. "Baseball: An

Automatic Question Answerer." in Computers and Thought, ed. E.
Feigenbaum and J. Feldman, New York: McGraw-Hill, 1963.

Harris, L. R. "User Oriented Data Base Query with the ROBOT Natural
Language Query System." International Journal of Man-Machine
Studies 9 (1977): 697-713.

Hendrix, G. G. "Human Engineering for Applied Natural Language
Processing." in Proceedings of the International Joint Conference on

Artificial Intelligence, Cambridge, MA: MIT, 1977.

Lindsay, R. K. "Inferential Memory as the Basis of Machines Which

Understand Natural Language." in Computers and Thought, eds. E.
Feigenbaum and J. Feldman, New York: McGraw-Hill, 1963.

Riesbeck, C. K. "Conceptual Analysis." in Conceptual Information
Processing, ed. R. C. Schank, New York: American Elsevier, 1975.

Riesbeck, C. and Schank R. C. "Comprehension by Computer:
Expectation-based Analysis of Sentences in Context." Research

Report 78, Yale University, 1976.

Simmons, R. F. "Answering English Questions by Computer: A Survey."
CACM 8 (January 1965): 53-70.

Simmons, R. F. "Storage and Retrieval of Aspects of Meaning in
Directed Graph Structures." CACM 9 (March 1966): 211-215.

Simmons, R. F.; Klein, S.; and McConlogue, K. "Toward the Synthesis of

Human Language Behavior." Behavioral Science 7 (July 1962): 402-
407.

Waltz, D. L. "Natural Language Access to a Large Data Base." in
Advaance Papers of the Fourth International Joint Conference on

Artificial Intelligence, Cambridge, MA: MIT, 1977.

Waltz, D. L. and Goodman, B. A. "Writing a Natural Language Data Base
System." in Proceedings of the International Joint Conference on

Artificial Intelligence, Cambridge, MA: MIT, 1977.

Weizenbaum, J. Computer Power and Human Reason. San Francisco:

W. H. Freeman, 1976.

Weizenbaum, J. "Eliza- A Computer Program for the Study of Natural

Language Communication Between Man and Machines." CACM 9

(January 1966): 36-45.

Winograd, T. Understanding Natural Language. New York: Academic
Press, 1972.

Woods, W. A. "Procedural Semantics for Question-Answering

Machine." in Proceedings of the Fall Joint Computer Conference.
Montvale, NJ: AFIPS Press, 1973.

Woods, W. A. "Semantics for a Question Answering System." Ph.D.

Thesis, Division of Engineering and Applied Physics, Harvard

University, 1967.

Woods, W. A.; Kaplan, R. M.; and Nash-Webber, B. The Lunar Sciences

Natural Language Information System: Final Report. Report 2378,
Cambridge, MA: Bolt, Beranek and Newman, 1972.

